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Abstract. The theoretical foundations of a proposed new method of reflector design are 
presented. The geometric-optics approximation is used to synthesise a reflector surface to 
produce a generalized far-field when illuminated by a point source. The far-field can have 
a prescribed variation in two variables and source blockage can bc removed. The tech- 
niques of differential geometry are used to show that a nonlinear second-order partial 
differential equation, the Monge-Am@re equation, must be solved subject to nonlinear 
boundary conditions. Particular consideration is given to the special case of fields with 
even azimuthal symmetry when referred to spherical polar coordinates. The method is 
applicable to problems in optics, acoustics and microwave antenna design where shaped 
beams are required. 

1. Introduction 

A new method of designing reflector surfaces under the geometric-optics approxi- 
mation has been introduced by the authors in a recent letter (Norris and Westcott 
1974). The theoretical foundations of the method are elaborated in this paper. 

The objective is to synthesise a reflector surface which is capable of producing a 
generalized far-field pattern when it is illuminated by a point source. 

Subject to certain constraints on surface curvature this problem is shown, by the 
use of differential geometry, to be reduced to solving a nonlinear second-order partial 
differential equation. 

In the past systematic methods in geometric design (see for example Silver 1949) 
have been restricted to a far-field variation in one variable, where the problem reduces 
to solving an ordinary differential equation. The present analysis extends the scope of 
geometric design to two variables thereby introducing a much greater flexibility in 
the realization of required far-fields. 

In order to solve the partial differential equation a boundary condition is for- 
mulated which allows elliptic forms of the equation to be solved numerically. The 
design procedure can be automated and the method has been successfully programmed 
on a digital computer. 

The method would seem to be generally useful in the optical and acoustic fields 
and particularly useful in dealing with the requirements of antennae in microwave 
systems, where a far-field with a prescribed functional variation over a specified solid 
angle in space is desirable. 

The theoretical foundations are detailed in # 2  and 3 where for generality and 
indeed brevity the methods of tensor calculus are used to derive the relevant equations. 
The resultant analysis is then referred to spherical coordinates in $4. Boundary con- 
ditions for the elliptic form of the partial differential equation are discussed in § 5 and 
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some implications about existence and uniqueness of solutions in $ 6 .  Finally some 
conclusions are presented in $ 7 .  Numerical results will be presented in subsequent 
papers. 

2. Mathematical formulation of the problem 

The two main concepts used in geometrical design are the conservation of energy and 
the law of reflection. With reference to the geometry of figure 1 the energy conservation 
law may be written in the form 

where G, I are the reflector far-field and incident power densities respectively and 
dQ', dSZ are solid angles subtended respectively by the elementary incident and re- 
flected ray cones indicated in the figure. 

surface I 
Far - field 
sphere  

Figure 1. Geometry showing elementary incident and reflected ray cones 

It is noted that if the feed is isotropic then I is a constant and D is effectively the 
far-field pattern. 

Consider a point P on a reflector surface with position vector r relative to source 
point 0. The unit vectors defining incident ray direction r / r  and reflected ray direction 
y at P are related by the law of reflection to a surface normal vector n where 

n = ry - r .  (2) 
Of course the vector n is nor a unit vector when given by (2). 

It is now assumed that the direction y(u', u2 )  is parametrized by two generalized 
coordinates U', u2 on the unit sphere !yl = 1 (say 8, C#J in a spherical polar coordinate 
system with origin at 0). 

1 
r3 

The elementary solid angles are then 

r, rl , r,] du' du2 dQ'= --[ 

dR = b,yr 9 ~ 2 1  du' du2, 
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where 

and [-, -, -3 denotes a scalar triple product (or determinant) of the bracketed vectors. 
Thus (1) becomes 

The problem becomes one of differential geometry and may be stated in the fol- 
lowing way. Given D(u', u2) can an explicit surface r (ul ,  U') be found satisfying equations 
(2) and (3)? A solution to this problem is developed under certain constraints in the 
following sections. 

3. The tensor analysis 

The analysis of the problem posed in generalized coordinates is best conducted for 
brevity and elegance using standard tensor notation, a brief note of which may be 
found in the appendix with further details in Lipschutz (1969) or Spain (1965). 

The vectors y, y l ,  y 2  are linearly independent and may be used as a basis for the 
vector field. Thus we may express 

- r  = qy+ply l  +p2y2  = qy+p'y i  (4) 

using the Einstein repeated index summation convention, where q, pi,  i = 1,2,  are co- 
efficients to be determined. In fact p i  refers to the contravariant component of - r  
referred to y i .  

A metric tensor gi ,  = y i  . y j ,  i, J = 1,2 ,  is defined on the surface of the unit sphere 

The vectors y i  are tangential to the sphere so that y . y i  = 0 and 
bl = 1. 

r2 = lrI2 = q2 +pipl,  ( 5 )  

where the covariant components pi and the contravariant components pi are related 
(see appendix) by 

(6) p .  I = g. .pJ .  I J  

n = (q  +r)y +$yi. 

Equation (2) becomes 

(7) 

Differentiating (4) with respect to ui, 

- r i  = qyi +qiy +-yj apl +plyij. 
2 U l  

The Gauss-Weingarten equations (see Lipschutz 1969) show that 
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where r: is a 
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Christoffel symbol defined by 

and I l f P 1 1 ,  lIg,pjj are inverse matrices. 
Combining (6), (8) and (9), 

- ri = (qi - pi)y + qyi + 7 + pkr!k y j .  (if ) 
But Y, is tangential to the reflector surface so that n . r ,  = 0 and (7), (10) are used to 
yield 

-n.r l  = 0 = ( q + r ) ( q i - p i ) + q p i + p j  -+pkrik ; (E ) 

where is termed the covariant derivative of pj with respect to ui and defined by 

The covariant differentiation of (5) with respect to ui gives 

rri  = q q i + p j f i i  

and so by combining (1 I) ,  (1 2 )  we have 

r(ri + qi - pi )  = 0. 

Hence pi = q i + r i ,  which is satisfied if we take 

p = q+r.  

Using ( 5 )  and ( 1  3 )  

p 2 - 2 p q + q 2  = r2 = q 2 + p i p i .  

q = ; ( P - p - l p i p i )  

r = % p + p - ' p i p i ) .  

Therefore, 

Substituting (13), (14) into (4) we obtain 

- r  = r y + p i q  

y = y i - p - * p i y .  

qi = P -  '(rpi-pjdi), 

where 

From ( I l ) ,  (13) 

and hence 

r i  = pi - qi = p -  ' (qpi  + pj f l i ) .  

(13) 
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-ri = (qi-PilY+Wi+Yjp.’i 

= -P- ‘(qpi +Pj@ib + wi + ~ @ i  

= qF+p.’ iv j  

= (q2$++Jvj. 

Hence 

[r,r,,r,I = - [ ~ Y + P i ~ ~ ( ~ ~ ’ , + p . ’ l ~ v j , ( ~ s l + p . ’ 2 ~ v j l  

= - r[y, V ,  , V,]  detWi +q2$) 

= -~ [Y,Y,  , Y ~ I  detWi +q6j) (18) 
since the components of V ,  , V,  in they direction do not contribute to the scalar triple 
product. 

Substituting (18) into (3) we obtain the partial differential equation for p(ul, U,) in 
the form 

D(u’, U’) = det(p.”,+q@)/r2, (19) 

where 

p.’i = ap’/aui + pkrik, 4 = &-p-lpipiX r = &+p-’pipi). 
In the next section we examine it more closely in spherical polar coordinates. 

4. Analysis in spherical polars 

Spherical polar coordinates U’ = 8, u2 = q5 are taken on the unit sphere bl = 1 so 
that the components referred to Cartesian axes taken at 0 are 

y = (sin 8 cos 4, sin 8 sin 4, cos 8) 

y 1  = ye = (cos 8 cos 4, cos 8 sin 4, -sin 8) 
y 2  = y b  = (-sin 8 sin 4, sin 8 cos q5,O). 

Then 

g,, = 1 ,  g,, = 0, g2, = sin28, g” = 1, g’2 = 0 , g22 = l/sin28 

r:, = 0, r;, = 0, r:, = -sinecos8, r:, = 0, r;, = c o t e ,  r;,= o 
pl = glJpj = p - - Po, p2 = g2jpj = pb/sin2 e, pl, = pee 

dP2 
ae p12 = P?, = -+p1r?,  +p2r:, = (pe4-cot 8pb)/sin28 

P?, = -+p1r:, + p 2 r i 2  = (pob+sinecos~p,) /s in2~.  

Thus (15) becomes 

aP2 
24 

r = -w-p#y,-p,y,/sin28 
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and (19) becomes 

rz  sin2eD(e, 4) = I(pW + 4)(pO4 + sin e cos Ope + 4 sin28) - (Pa,+ - cot Bp4)21, 

where 

4 = +[p - p- '(pi + &sin2 e)], r = p-4. 

It is evident therefore that the dependent variable p(e,$) is positive and satisfies 
a second-order nonlinear partial differential equation of the form 

Peep++ -P& = Ape, + 2Bpe4 + CP,, + E f r2  sin2eD(8, $), (21) 

where A, B, C, E are functions of 0, 4, p, Pe and p4. This equation is of the Monge- 
Ampere type, particular forms of which have been studied in detail by numerous 
authors in differential geometry (see for example Pogorelov 1964, 1973), but have not 
been previously used, we believe, in connection with reflector synthesis. 

Any suitable solution of (21) satisfying certain boundary conditions to be imposed 
may be inserted into (20) to generate a reflector surface r = r(e,#). 

The Monge-Ampkre form can be retained and slightly simplified by transforming 
the dependent variable by writing p(e,4) = exp(o(O,4)). Then a satisfies the equation 

a = - (a: +sin e cos 80, + 4,, sin2@ 

b = o+(a,-cOt 0) 

c = -(ai+qn) 

d = - (Q ;+qn)(sin ecos 8ae+4, sin28)-o&,-cot28+2aecot e) 
e = r: sin2& 

with 

rn = r e-" = 311 + a i  +o:/sin28) 

qn = 4 e-" = 81 -o:-o:/sin28) 

as normalized forms of r, 4 respectively. 
The form of equation (22) yields a number of points of interest about its solutions. 
( 1 )  The coefficients a, b, c, d,  e are functions of 8, 0 0  and o4 but not of o. Thus an 

arbitrary constant can be added to any solution and the equation will still be 
satisfied. This can be used to advantage in numerical solutions. 

(2) If D(e,#) is an even function of azimuthal angle 4 then a(@ -4) satisfies the 
same equation as a(e,4). Hence if the boundary conditions have even sym- 
metry in 4 then the reflector will also exhibit this symmetry. 

(3) Due to the coordinate system a singularity at 0 = 0 exists in some of the co- 
efficients. An alternative form of rationalized coordinates can be used to avoid 
this pole and is presented in a subsequent paper. 

(4) Assuming that D ( e , 4 )  is positive and non-singular it is possible to show that a 
one-to-one mapping exists between points on the far-field sphere and points on 
the reflector surface. (This is a necessary requirement for a geometric-optics 
design to be a fair approximation to a diffraction-limited antenna.) 
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( 5 )  The question of whether the equation is elliptic or hyperbolic is decided by the 
sign of the discriminant 

Q = a c - b 2 - t d f e D ,  

which after some simplification becomes 

Q = k r,‘ sin29D. (23) 

Thus the equation is either elliptic if the upper sign is taken or hyperbolic with 
the lower sign assumed. Elliptic solutions for a(8,$) can produce reflectors 
possessing either two or no caustic surfaces. Hyperbolic solutions can yield 
reflectors possessing one caustic surface. Thus three distinct classes of reflector 
are possible. 

(6) The question of conditions for existence of solutions for the Monge-Ampere 
equation is not considered in this paper. A good account of the literature in 
this field is given by Pogorelov (1964, 1973) but the Monge-AmpCre forms he 
uses are more specialized than those given here. Thus he refers to strongly 
elliptic equations in which the coefficients are restricted by the conditions that 
a<2+2b<q+cq2 is positive definite and d + e D  > 0, which are not in general 
satisfied by (22). Despite the shortcomings of existing theory numerical solutions 
have been obtained by us and have led to interesting reflector designs. 

5. Boundary conditions for +even symmetric fields 

In this paper we confine attention to elliptic forms of (22) and boundary conditions are 
developed which enable a successful approach to $-even symmetric fields to be made. 

The far-field cone of solid angle R intersects the far-field sphere R ,  in a circle I-. 
The axis of this cone is assumed to be the positive Oz axis of the far-field Ox, y ,  z coordinate 
system. The edge rays to r are defined by 8 = er, 0 < $ < 2R. 

The reflector axes Ox’, y,  z’ are obtained by a negative rotation t,b of the far-field 
axes about the common axis Oy. Thus we obtain a tilted feed configuration as shown 
in figure 2, where the reflector occupies a solid angle CY bounded by a right circular 
cone 8’ = e;, 0 < $‘ G 2 R .  

Figure 2. Respective coordinate axes for far-field and reflector with tilted feed configuration. 
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Boundary conditions are now obtained by the one-to-one mapping of points on 
the reflector boundary, which is assumed to be the boundary of a cross section, not 
necessarily plane, of the cone 6 = e:, onto points on r. These conditions must be 
compatible with the energy conservation law 

J:n Joe' G(8,4) sin 8 d8 d4, (24) Jr Z(8', 4') sin 8' de' d4' = 

which assumes that there is no folding of the reflector causing shadowing effects. This 
is also a necessary requirement to avoid blockage to incident or reflected rays. 

The energy law effectively expresses 0: in terms of O f .  For consider a simple case 
in which the source is an isotropic radiator over ST so that 1 = Io, a constant over 
R'. Then 

An arbitrary point on the reflector has coordinates (x', y', 2') referred to reflector 
axes or (x,y,z) referred to far-field axes, and if all coordinates are normalized by 
division by ea we have 

x' = rn sin 8' cos 4' = z sin $ + x  cos $ ( 2 5 4  
y' = r, sin e' sin 4' = y (25b) 

z ' =  rncos@ = zcos$-xsin$. (26)  

x = (ao sin 4/sin 8) - (4, sin 8 + a, cos 8) cos 4 ( 2 7 4  
y = -(ao cos 4/sin 8)-(4, sin 8 +a, cos 8) sin 4 (27b) 

But from (20) 

z = o,sin8-q,cos8, 

4" = 81 - a,$ - a$/sin28), 
where 

rn = l-q,,. 

When (26), (27a) and (28) are combined 6 is related to 8 and the equation 

Ao,Z +BO$+ Ca,+ DO+ + E = 0, 
where 

A = B sin28 = cos e'+sin 8 sin (I/ cos 4-cos 8 cos 4 
C = - 2 sin 8 cos i+b - 2 cos 8 sin $ cos 4 
D = 2 sin 

E = cos @-sin 8 sin $ cos $+cos 8 cos $, 

sin 4/sin 8 

must be satisfied by the partial derivatives. The condition is quite general and does 
not depend on any symmetry property of the field. It must be satisfied in particular 
by the boundary values a&, 4), cr+(df, 4). 

It is clear that when (29) is used as a boundary condition the boundary mapping 
is not completely specified since the relationship @ -, Cp is not defined. 

For fields which are even functions of 4 about the Ox axis it is reasonable to assume 
from a previous discussion that o(8,~$) is also symmetric about the Ox axis. In fact 
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we shall assume that Q+ = 0 when y = 0 (ie (6 = 0 or II). The corresponding values of 
Qg are given by (29) as the solution of the quadratic 

A’Q; + CO, + E’ = 0 

A’ = cos e - cos(e +) 

E‘ = cos e‘ + cos(e f +), 

(6 = o,n, (30) 
where 

C‘ = -2sin(8?$) 

in which the choice of the upper sign refers to (6 = 0 and the lower sign to (6 = n. Thus 
we obtain 

Consideration of equations (31) with (25) and (27) shows that when the upper signs 
are assumed then (6’ = 0 when (6 = 0 and (6‘ = II when (6 = n, ie edge rays link ‘top’ 
of reflector with ‘top’ of far-field circle r and ‘bottom’ of reflector with ‘bottom’ of r. 
Alternatively when the lower signs are chosen, (6‘ = 0 when # = II and 4‘ = II when 
(6 = 0 indicating a ‘topbottom’ and ‘bottom-top’ link respectively. For either choice 
of signs only one of the pair (31a), (31b) needs to be considered, the other is satisfied 
automatically when a+ = 0. 

Boundary conditions for the azimuthally symmetric field problem suggested by the 
above discussion are summarized below : 

(i) Energy conservation equation (24) which relates 8: to Of 
(ii) Ao; + Ba: + CO, + Do, + E  = 0 for 8 = Of,  8’ = 8: and all (6 in (0, n) 

(iii) a+(& 0) = o,(8,~) = 0 for all 8 in (0,8,) 
(iv) ae(Of, 0) = cot +(Of + $ T 8:) 
(v) Q(O,(6) = 0. 

Condition (iv) is not independent but consistent with (ii) and (iii). The condition 
(v) is introduced because the Monge-Amptke equation and the boundary conditions 
involve only partial derivatives of Q and not Q itself so that without (v) Q is only deter- 
mined to within an arbitrary constant. 

It has been found that (iHv) are sufficient to enable useful solutions to be found 
numerically. These solutions are inserted into (20) to obtain the corresponding re- 
flector surfaces. The results are to be presented in a subsequent paper. 

6. Existence and uniqueness 

The lack of relevant theorems referred to in $ 4  implies that any conclusions based 
upon numerical work must be purely speculative and further work in pure mathematics 
is necessary to substantiate conditions for existence and uniqueness. Nevertheless 
some implications can be deduced by examining the boundary conditions more closely. 

The quadratic (29) on the boundary represents the equation of a circle, for if 

5 = go(&, (61, tf = a,(e,, #)/sin e, 
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then 

A ( t 2  + q 2 )  + C< + qD sin 8, + E  = 0. 

The centre of the circle is (to, qo) and the radius is p where 

C 
2A 

D sin 8 
2A 

sin 8, cos I) + cos 8, sin I) cos 4 
cos 8, cos I) -cos 8: - sin 8, sin I) cos 4 

< = - - = -  0 

sin I) sin 4 
cos 8, cos I) -cos 8: - sin 8, sin I) cos 4 

q - -f= 
0 -  

C2 + D2 sin’8, -4AE f sin 8: 
’= ( 4A2 I =  \cos cos II/ - cos 8: - sin 8, sin I) cos 41 ‘ 

The circle is fixed in general by specifying values for the parameters Of, e:, I), 4 
and for each set of parameter values the boundary values 5, q must lie on the perimeter 
of the corresponding circle. Thus permitted values of t, q are bounded by 15 - tol < p, 
I t l -Vol  G P. 

To illustrate the situation a series of these circles is drawn in figure 3 for values of 
4 in the range (0, n) and for the particular values 8, = n/3, 8; = 2n/3 and IC/ = n/6. It 
should be noted that the mirror image in the q = 0 axis is obtained, though not plotted, 
when 0 takes values in the range (n, 2n). Superimposed is the circle t2 + q2 = 1 which 
corresponds to rn = 1 and qn = 0. Hence boundary values which fall within this circle 
have r ,  < 1 and q, > 0 while those outside have r, > 1 and qn < 0. The origin < = 0, 
q = 0 corresponds to r ,  = 4 which is associated with a spherical reflector. The four 
values of t for which q = 0 on the circles 4 = 0 and n are of course consistent with 
condition (iv) of 0 5. 

1 2  0 

- 4  

1-20 

Figure 3. Permissible boundary value loci for various values of 4 in (0, n) with 0, = n/3, 
0: = 2n/3 and IL = 4 6 ,  where t = a&, d), tl = ur(Or, q5)/sin 0,. The dotted circle cor- 
responds to rn = I ,  qn = 0. 
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The situation is less complicated when $ = 0, for then (r,  q)  lies on the circle de- 
fined by 

sin 8, sin 6: 
= 1cos e,-cos e:( t o =  - ‘ lo = 0, cos e, -cos 6:’ 

for all 4. At 4 = 0 the point (t, q )  = (to k p, 0) consistent with condition (iv), and as 
4 increases from 0 to K ( & q )  takes values consistent with the solution for def,#), 
finally returning to its starting value when 4 = K. 

7. Conclusions 

A new method has been proposed in which reflector surfaces may be synthesised to 
produce a given far-field radiation pattern when illuminated by a point source. The 
method, based upon the geometric-optics approximation, offers more flexibility to the 
reflector designer in that far-field patterns are allowed to vary in a prescribed way with 
two coordinates over a solid angle as compared with one variable in current systematic 
methods. 

The foundations of the theory are presented in this paper and it is shown that the 
solution of the problem hinges on the ability to solve a nonlinear second-order partial 
differential equation, namely the Monge-Ampere equation, subject to certain non- 
linear boundary conditions. Theorems of existence and uniqueness currently available 
are too restrictive to be applied to the generalized equations presented here. 

The boundary conditions are examined in detail for even azimuthal symmetric 
fields for elliptic forms of the Monge-Ampkre equation and it is believed that at least 
two solutions are possible for this case. In fact this problem has been successfully 
programmed for a digital computer and numerical results together with further de- 
velopments of the theory will be presented in subsequent papers. 

The theory presented here should be applicable to a wide variety of problems in 
optics and microwaves in which a shaped beam is required. One particular advantage 
to the microwave antenna designer is that only the amplitude and not the phase of the 
far-field needs to be specified. 
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Appendix. Tensor notation 

The equation of a surface may be written r = r ( d ,  U’) where ul, U’ are generalized 
curvilinear coordinates. The vectors r l  = ar/du’, r z  = ar/au’ are linear independent 
vectors in the tangent plane at the point P(u’, U’). An arbitrary vector in this plane may 
be expressed as a linear combination of the two : 

U = airi = a l r l  +a2r ,  



532 B S Westcott and A P Norris 

where a', a2 are the contravariant components of U referred to ri, i = 1,2. We define 
g i j  = g j i  = r i  . r j ,  i, j = 1,2, to be the metric tensor in the tangent plane and g'J a tensor 
such that 

1 i f i = j  

0 otherwise. 
g i p  = 6i  = 

Then lldjll is the inverse matrix of Ilgijll. 
Defining a reciprocal basis r', r2 such that ri . rj = Si, i, j = 1,2, then 

U = airi = alrl +a/, 

where a,, a2 are the cooariant components of U referred to r'. 
The relationship between ai and a' is given by 

aj  = ais{ = a F i . r j  = a . r .  1 = airi . r .  1 1  = g.p'. 

Similarly aj = g'ja,. 
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